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Background and Notations

▶ Graph such recommender
systems (Reddit) too big to
enter GPU

▶ Graph G = {V,E,A}
▶ L = D −A Laplacian

symmetric psd matrix

▶ For vector X,
∥X∥L =

√
XTLX, smoothness

on edges.
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Figure: Graph Coarsening with coarsening ratio of 4/7
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Figure: Graph Coarsening with coarsening ratio of 4/7

Is training a GNN on a coarsened graph probably close
to training it on the original graph ?

3 / 12



Background Coarsening
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Spectral guarantee

Definition (Restricted Spectral Approximation constant)
Consider a subspace R ⊂ RN , a Laplacian L, a coarsening matrix Q and
its corresponding projection operator Π = Q+Q. The RSA constant
ϵL,Q,R is defined as

ϵL,Q,R = sup
x∈R,∥x∥L=1

∥x−Πx∥L

Many classical coarsening algorithms aim to minimize the RSA
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Message Passing GNN

With initial node features H0, node representation matrix at layer l H l

and the propagation matrix S ; the GNN Φθ outputs after k layers:

H l = σ
(
SH l−1θl

)
, Φθ(H

0, S) = Hk ,
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Message Passing GNN

With initial node features H0, node representation matrix at layer l H l

and the propagation matrix S ; the GNN Φθ outputs after k layers:

H l = σ
(
SH l−1θl

)
, Φθ(H

0, S) = Hk ,

What is the best choice of propagation matrix on a coarsened
graph ?

▶ Sc = fS(A)

▶ Sdiag
c , weighted self loops [2]

With Sc = fS(A) and Sdiag
c spectral guarantees on the coarsening

does not lead to message passing guarantees

0[2] Huang et al , Scaling Up Graph Neural Networks Via Graph Coarsening, KDD
2021
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A new propagation matrix for Gc

SMP
c = QSQ+ ∈ Rn×n
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(a) Original graph, S = A (b) Sc = Ac (c) Sc = QSQ+ (Ours)
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Propagation bound theorem

Assumptions

▶ Π and S are both ker(L)-preserving.

▶ S is R-preserving (i.e ∀x ∈ R, Sx ∈ R).
Define SMP

c as SMP
c = QSQ+, we have

∥Sx−Q+SMP
c xc∥L ≤ ϵL,Q,R∥x∥L (CS + CΠ)
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Propagation bound theorem experiment

∥Sx−Q+SMP
c xc∥L ≤ ϵL,Q,R∥x∥L (CS + CΠ)
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Figure: Log and linear scale of maxx∈R∥S6x−Q+SMP
c

6
xc∥L/∥x∥L,the lower,

the better
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Train GNN on Gc (theorem)

Assumptions

▶ There is a constant CJ such that |J(x)− J(x′)| ≤ CJ∥x− x′∥L,
with J the loss function

▶ σ is R-preserving, that is, for all x ∈ R, we have σ(x) ∈ R,
∥σ(x)− σ(x′)∥L ≤ Cσ∥x− x′∥L, σ and Q+ commute:
σ(Q+y) = Q+σ(y).

For all node features X ∈ RN×d such that X:,i ∈ R, denoting by
θ⋆ = argminθ∈Θ R(θ) and θc = argminθ∈Θ Rc(θ), we have

R(θc)−R(θ⋆) ≤ CϵL,Q,R∥X∥:,L
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Dataset Presentation

Dataset # Nodes # Edges # Features #classes

Reddit 232,965 114,615,892 602 41
Reddit90 23,298 8,642,864 602 41
Reddit99 2,331 10,838 602 41

Cora PCC 2,485 10,138 1,433 7
Cora70 746 3,716 1,433 7

Citeseer PCC 2,120 7,358 3,703 6
Citeseer70 636 2,122 3,703 6
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Training GNN on Gc (experiments)

Relaxing activation function assumption with GCNconv

SGC
Cora Citeseer Reddit

r 0.5 0.7 0.5 0.7 0.9 0.99

Ssym
c 16.1 ± 3.8 16.4 ± 4.7 18.6 ± 4.6 19.8 ± 5.0 37.1 ± 6.6 3.7 ± 5.5

Sdiff
c 21.8 ± 2.2 13.6 ± 2.8 30.5 ± 0.2 23.1 ± 0.0 18.3 ± 0.0 14.9 ± 0.0
Sc 78.7 ± 0.0 74.6 ± 0.1 72.8 ± 0.1 72.5 ± 0.1 87.5 ± 0.1 37.3 ± 0.0

Sdiag
c 78.7 ± 0.1 77.3 ± 0.0 73.4 ± 0.1 73.1 ± 0.4 87.6 ± 0.1 37.3 ± 0.0

SMP
c (ours) 80.3 ± 0.1 78.5 ± 0.0 74.6 ± 0.1 74.2 ± 0.1 90.2 ± 0.0 64.1 ± 0.0
Full Graph 81.6 ± 0.1 73.6 ± 0.0 94.9

GCNconv
Cora Citeseer Reddit

r 0.5 0.7 0.5 0.7 0.9 0.99

Ssym
c 78.1 ± 1.3 30.8 ± 2.5 62.5 ± 11 52.7 ± 3.6 48.1 ± 8.9 34.8 ± 4.0

Sdiff
c 74.5 ± 0.9 62.6 ± 7.1 71.2 ± 1.7 37.6 ± 0.9 71.3 ± 1.0 18.7 ± 1.7
Sc 79.9 ± 0.9 78.1 ± 1.0 70.7 ± 1.0 67.1 ± 3.1 88.0 ± 0.1 54.2 ± 2.4

Sdiag
c 80.4 ± 0.8 78.6 ± 1.3 70.2 ± 0.8 69.3 ± 1.9 88.1 ± 0.2 55.5 ± 1.8

SMP
c (ours) 79.8 ± 1.5 78.2 ± 0.9 72.0 ± 0.8 70.0 ± 1.0 84.4 ± 0.3 60.3 ± 0.9
Full Graph 81.6 ± 0.6 73.1 ± 1.5 OOM
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Appendices



Adaption of Loukas coarsening algorithm

Algorithm Loukas algorithm Adapted

Require: Adjacency matrix A, Laplacian L = fL(A), propagation matrix S, a coarsening ratio r , preserved space R,
maximum number of nodes merged at one coarsening step : ne

1: nobj ← int(N −N × r) the number of nodes wanted at the end of the algorithm.
2: compute cost matrix B0 ← V V TL−1/2 with V an orthonormal basis of R
3: Q← IN
4: while n ≥ nobj do
5: Make one coarsening STEP l
6: Create candidate contraction sets.

7: For each contraction C, compute cost(C, Bl−1, Ll−1) =
∥ΠCBl−1(B

T
l−1Ll−1Bl−1)

−1/2∥LC
|C|−1

8: Sort the list of contraction set by the lowest score
9: Select the lowest scores non overlapping contraction set while the number of nodes merged is inferior to min(n−

nobj , ne)
10: Compute Ql, Q

+
l , uniform intermediary coarsening with contraction sets selected

11: Bl ← QlBl−1

12: Q← QlQ
13: Al ← (Q+

l )
⊤Al−1Q

+
l − diag((Q+

l )
⊤Al−1Q

+
l )1n)

14: Ll−1 = fL(Al−1)
15: n← min(n− nobj , ne)
16: end while
17: IF uniform coarsening THEN Q← row-normalize(QlQ)
18: Compute SMP

c = QSQ+

19: return Q,SMP
c
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Training on coarsened graph procedure

Algorithm Training Procedure

Require: Adjacency A, node features X, desired propagation matrix S,
preserved space R, Laplacian L, a coarsening ratio r

1: Q, SMP
c ← Coarsening-algorithm(A,L, S, r,R)

2: Xc ← QX
3: Initialize model (SGC or GCNconv)
4: for Nepochs iterations do
5: compute coarsened prediction Φθ(S

MP
c , Xc)

6: uplift the predictions : Q+Φθ(S
MP
c , Xc)

7: compute the cross entropy loss J(Q+Φθ(S
MP
c , Xc))

8: Backpropagate the gradient
9: Update θ

10: end for
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Proof Theorem propagation

Key argument : For this well-designed choice of SMP
c , Q+SMP

c xc = ΠSΠx
Since x ∈ R and S is R-preserving, we have

∥Π⊥x∥L ≤ ϵL,Q,R∥x∥L

where Π⊥ = IN −Π, and similarly for Sx. Moreover, under Assumption, both Π and S are
ker(L)-preserving, such that ∥ΠSx∥L ≤ ∥ΠS∥L∥x∥L for all x. Then

∥Sx−Q+SMP
c xc∥L = ∥Sx−ΠSΠx∥L

= ∥Sx−ΠSx+ΠSx−ΠSΠx∥L
= ∥Π⊥Sx+ΠSΠ⊥x∥L
≤ ∥Π⊥Sx∥L + ∥ΠSΠ⊥x∥L
≤ ϵL,Q,R∥Sx∥L + ∥ΠS∥L∥Π⊥x∥L
≤ ϵL,Q,R∥Sx∥L + ϵL,Q,R∥ΠS∥L∥x∥L = ϵL,Q,R∥x∥L (CS + CΠ)
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More about ker L assumption

▶ For uniform coarsenings with L = D −A and connected graph G,
ker(L) is the constant vector1, and Π is ker(L)-preserving.This is the
case examined by Loukas.

▶ For positive definite “Laplacians”, ker(L) = {0}. This is a
deceptively simple solution for which ∥ · ∥L is a true norm. This can
be obtained e.g. with L = δIN + L̂ for any p.s.d. Laplacian L̂ and
small constant δ > 0. This leaves its eigenvectors unchanged and
add δ to its eigenvalues, and therefore does not alter the
fundamental structure of the coarsening problem.

1Note that this would also work with several connected components, if no nodes
from different components are mapped to the same super-node.
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Propagation theorem other propagation
matrices
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Knowing that S = fS(A), we compare:

▶ SMP
c = QSQ+, our proposed matrix

▶ Sc = fS(Ac), the naive choice

▶ Sdiag
c = D̂′−1/2

(Ac + C)D̂′−1/2
,

proposed in [?]

▶ Sdiff
c = QSQ⊤, which is roughly

inspired by Diffpool [?]

▶ Ssym
c = (Q+)⊤SQ+, which is the

lifting employed to compute Ac

Figure: Log and linear scale of

maxx∈R∥S6x − Q+SMP
c

6
xc∥L/∥x∥L,

the lower, the better
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