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Background and Notations

Graph such recommender
systems (Reddit) too big to
enter GPU

Graph G ={V, E, A}
L =D — A Laplacian
symmetric psd matrix

For vector X,
Xl = VXTLX, smoothness
on edges.
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Motivation

2

Figure: Graph Coarsening with coarsening ratio of 4/7
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Motivation

Figure: Graph Coarsening with coarsening ratio of 4/7

Is training a GNN on a coarsened graph probably close
to training it on the original graph ?
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Background Coarsening

0[1] Andreas Loukas, Graph Reduction with Spectral and Cut Guarantees, JMLR
2019

4/12



Background Coarsening
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Background Coarsening
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Background Coarsening
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Spectral guarantee

Definition (Restricted Spectral Approximation constant)

Consider a subspace R C RY, a Laplacian L, a coarsening matrix Q and
its corresponding projection operator II = Q*(Q. The RSA constant
€r,Q,r is defined as

€L,Qqr = sup |z -zl
z€R,||z||L=1

Many classical coarsening algorithms aim to minimize the RSA
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Message Passing GNN

With initial node features H°, node representation matrix at layer [ H'
and the propagation matrix S ; the GNN ®4 outputs after k layers:

H'=0o (SH'"™'0,), ®o(H",5)=H",
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Message Passing GNN

With initial node features H?, node representation matrix at layer [ H'
and the propagation matrix S ; the GNN &4 outputs after k layers:

H' =0 (SH'"™'9,)), ®¢(H",S) = H",

What is the best choice of propagation matrix on a coarsened
graph ?
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Message Passing GNN

With initial node features H°, node representation matrix at layer [ H'
and the propagation matrix S ; the GNN &y outputs after &k layers:

H' =0 (SH™'0,), ®o(H",S)=H",

What is the best choice of propagation matrix on a coarsened
graph ?

> S. = f5(14)
> Sdiag weighted self loops [2]

With S. = fs(A) and S%%9 spectral guarantees on the coarsening
does not lead to message passing guarantees

0[2] Huang et al , Scaling Up Graph Neural Networks Via Graph Coarsening, KDD
2021
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A new propagation matrix for G.

SMP = QSQt e R

1 1/2
1 1/2
1 1/3 /2 1 \\'
. P/
K 2/3 /
v 2 § Z %
2 2/3
(a) Original graph, S = A (b) Se = Ac (c) Se = QSQT (Ours)
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Propagation bound theorem

Assumptions

» II and S are both ker(L)-preserving.

» S is R-preserving (i.e Vo € R, Sz € R).
Define SMP as SMP = QSQ*, we have

1Sz — QT SM x| < erorllzlr (Cs + Cn)
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Propagation bound theorem experiment

Sz — QTSM ac|lL < erorllzlL (Cs + Cn)

10
— gMP — gMP
o SMP (Ours) SMP (Ours)
iift — 5
gsum 08 gliag
1074 c c
— S Sdift
1004 Sr/m_q 0.6
(:
10724 0.4
1074 0.2
o] TTTTTTTTTT
0.0
10-2 10t 00 01 02 03 04 05 06 07
coarsening ratio coarsening ratio

Figure: Log and linear scale of maxer | S%z — Q*Syp6mc||L/||x||L,the lower,
the better
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Train GNN on G, (theorem)

Assumptions
» There is a constant C such that |J(z) — J(2")| < Cyllz — /||,
with J the loss function
> o is R-preserving, that is, for all z € R, we have o(z) € R,
lo(z) —o(@)||L < Collz — 2'||z, 0 and QT commute:

o(QTy) = Q%a(y).

For all node features X € RN*? such that X.; € R, denoting by
0* = arg mingeo R(0) and 0. = arg mingco R.(0), we have

R(QC) — R(Q*) S CGL’QRHX

|:,L
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Dataset Presentation

Dataset # Nodes # Edges # Features #classes
Reddit 232,965 114,615,892 602 41
Reddit90 23,298 8,642,864 602 41
Reddit99 2,331 10,838 602 41
Cora PCC 2,485 10,138 1,433 7
Cora70 746 3,716 1,433 7
Citeseer PCC 2,120 7,358 3,703 6
Citeseer70 636 2,122 3,703 6
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Training GNN on G. (experiments)

Relaxing activation function assumption with GCNconv

sGc Cora Citeseer Reddit
r 0.5 0.7 0.5 0.7 0.9 0.99
Szum 16.1+38 164+47 186+46 198+50 37.1+66 37+55
Sdits 21.8+22 13.6+28 305+02 231+00 183+00 149+0.0
S. 787+00 746+01 728401 725+0.1 87.5+01 37.3+0.0
Sdiag 787+01 77.3+£00 734401 731+04 87.6+01 37.3+00
SYP (ours) 80.3+01 785400 746+01 742+01 90.2+00 64.1+0.0
Full Graph 81.6 + 0.1 73.6 + 0.0 94.9
GCNeonv Cora Citeseer Reddit
r 0.5 0.7 0.5 0.7 0.9 0.99
Sgym 781+ 13 308+25 625+ 11 527+36 481+89 348+4.0
Sdifrs 745+09 626+71 712+17 376+09 71.3+1.0 187+ 17
S 799+09 781410 707+10 671+31 880+01 542+24
Sdiag 80.4+08 786+13 702+08 693+19 881+02 555418
SYP (ours) 798+ 15 782+09 720+08 70.0+1.0 844+03 60.3+09
Full Graph 81.6 + 0.6 731+ 15 OOM
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Adaption of Loukas coarsening algorithm

Algorithm Loukas algorithm Adapted

Require: Adjacency matrix A, Laplacian L = f1(A), propagation matrix S, a coarsening ratio 7 , preserved space R,

1:
2:
3:
4:
5:
6:
7
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

maximum number of nodes merged at one coarsening step : n.
Nob; < int(N — N X r) the number of nodes wanted at the end of the algorithm.
compute cost matrix By VVTL=/2 with V an orthonormal basis of R
Q« In
while n > ng; do
Make one coarsening STEP |
Create candidate contraction sets. " e
For each contraction C, compute cost(C, Bi—1,Li—1) = W%M
Sort the list of contraction set by the lowest score
Select the lowest scores non overlapping contraction set while the number of nodes merged is inferior to min(n —
TNobj, Ne)
Compute Qi, Q;", uniform intermediary coarsening with contraction sets selected
By + QB
Q<+ QQ
A= Q)T A Qf — diag((Q)) T Ai-1Q)1n)
Lioy = fo(Ai-r)
n 4 min(n — nebj, Ne)
end while
IF uniform coarsening THEN Q < row-normalize(Q:Q)
Compute SM° = QSQ*
return Q, SM°
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Training on coarsened graph procedure

Algorithm Training Procedure

Require: Adjacency A, node features X, desired propagation matrix S,
preserved space R, Laplacian L, a coarsening ratio r

1: Q, SMP « Coarsening-algorithm(A, L, S, r, R)

2 X, « QX

3: Initialize model (SGC or GCNconv)

4: for Nepochs iterations do

5. compute coarsened prediction ®g(SMP, X )

6:  uplift the predictions : QT ®4(SMP, X )

7 compute the cross entropy loss J(Q+®4(SMP, X))
8:  Backpropagate the gradient

9:  Update 6

10: end for
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Proof Theorem propagation

Key argument : For this well-designed choice of SMP, QT SMPy, = TISTIx
Since x € R and S is R-preserving, we have

[Ttz

L

L <erorlT

where II+ = Iy — II, and similarly for Sz. Moreover, under Assumption, both IT and S are
ker(L)-preserving, such that ||ILSz|| < ||ILS| L ||=|/1 for all z. Then
ISz — QT SMPx |1 = ||Sx — IISTIz||,
= ||Sz — IISx + 1Sz — IISTlz|| L
= |1+ Sz + ST 2|,
< |4 Sall, + TSI a]
< er.qrSzllz + [ITLS| LTz
< erQrllSzln + erorIIS|LllellL = ergrllzllL (Cs + Cn)
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More about ker L assumption

» For uniform coarsenings with L = D — A and connected graph G,
ker(L) is the constant vector!, and II is ker(L)-preserving. This is the
case examined by Loukas.

» For positive definite “Laplacians”, ker(L) = {0}. This is a
deceptively simple solution for which || - ||z, is a true norm. This can
be obtained e.g. with L = §Iy + L for any p.s.d. Laplacian L and
small constant § > 0. This leaves its eigenvectors unchanged and
add ¢ to its eigenvalues, and therefore does not alter the
fundamental structure of the coarsening problem.

INote that this would also work with several connected components, if no nodes

from different components are mapped to the same super-node.
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Propagation theorem other propagation
matrices

SMP (Ours)
it
som P

)

coarsening ratio

Knowing that S = fs(A), we compare:

> SMP — QSQT, our proposed matrix

» S. = fs(Ac), the naive choice

> sdies = (A 4 oyp 2,

proposed in [?]

> 58 = QSQT, which is roughly
inspired by Diffpool [?]

S¥™ = (QT)TSQT, which is the
lifting employed to compute A,

v

Figure: Log and linear scale of

6
maxger|[S%z — QT SYF wel|L /x|,
the lower, the better
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