

Taxonomy of reduction matrices for Graph Coarsening

Antonin Joly, Nicolas Keriven, Aline Roumy

Motivation

- Graph such as recommender systems (Reddit) too big to enter GPU
- Graph Coarsening is a solution, along with graph condensation and node sampling strategies

Background

Figure: Graph Coarsening with coarsening ratio of 4/7

Background

Figure: Graph Coarsening with coarsening ratio of 4/7

Background

Figure: Graph Coarsening with coarsening ratio of 4/7

Do P and Q play similar roles?

Only lifting matrix Q contains structural information

- Coarsened Adjacency: $A_c = Q^{\top}AQ$
- Comb. Laplacian: $\mathcal{L} = D A$,

$$Q = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

A well partitioned Q matrix for \mathcal{L}

 $^{^1}Q$ is said to be well-partitioned if it has exactly one non-zero coefficient per row

Only lifting matrix Q contains structural information

- Coarsened Adjacency: $A_c = Q^{\top}AQ$
- Comb. Laplacian: $\mathcal{L} = D A$,

$$Q = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

A well partitioned 1Q matrix for $\mathcal L$

Lemma. (Consistency of Laplacian [1]) Let Q be a well-partitioned matrix. The two following properties are equivalent:

Q is proportional to a binary matrix.

$$\forall A, \quad L(A_c) = Q^{\top} L Q$$

[1] Andreas Loukas, Graph Reduction with Spectral and Cut Guarantees, JMLR 2019.

Only lifting matrix Q contains structural information

Lemma. (Consistency of Laplacian [1])

Let ${\cal Q}$ be a well-partitioned matrix. The two following properties are equivalent:

 ${\cal Q}$ is proportional to a binary matrix.

$$\forall A, \quad L(A_c) = Q^{\top} L Q$$

 \implies For a fixed lifting matrix Q, what are the admissible reduction matrix P? Can we find a better matrix P than the pseudo inverse?

[1] Andreas Loukas, Graph Reduction with Spectral and Cut Guarantees, JMLR 2019.

General set of reduction matrices E_1

Lemma. (Generalized Inverse and Π projection) For a well-partitioned lifting matrix Q, let $\Pi = QP$:

$$\Pi^2 = \Pi \iff Q \in P^g$$

where P^g is the set of **generalized inverse** of P (more general than Moore-Penrose)

To our knowledge, E_1 does not have a closed-form!

A characterizable subset E_2

Lemma. (Generalized reflexive inverse)

For a well-partitioned lifting matrix Q and a reduction matrix P such that $Q \in P^g$:

$$rank(P) = n \iff P \in Q^g$$

Conversely, $P \in Q^g$ implies $Q \in P^g$ and $\operatorname{rank}(P) = n$, such that $E_2 = Q^g \subset E_1$. E_2 is the set of generalized **reflexive** inverse.

Lemma. (Characterization of generalized reflexive inverses of Q) Let $Q \in \mathbb{R}^{N \times n}$ be a well-partitioned lifting matrix.

$$E_2 = Q^g = \{Q^+ + M(I_N - QQ^+) \mid M \in \mathbb{R}^{n \times N}\}$$

where ${\cal M}$ can be optimized wrt ${\it anything}$, supervised or unsupervised.

A characterizable subset E_2

Lemma. (Characterization of generalized reflexive inverses of Q) Let $Q \in \mathbb{R}^{N \times n}$ be a well-partitioned lifting matrix.

$$E_2 = Q^g = \{Q^+ + M(I_N - QQ^+) \mid M \in \mathbb{R}^{n \times N}\}$$

where ${\cal M}$ can be optimized wrt ${\it anything}$, supervised or unsupervised.

 E_2 is easily characterized but the optimized matrix M is dense!

A sparse subset E_3

Lemma. (Generalized reflexive inverse with same support) Let $Q \in \mathbb{R}^{N \times n}$ be a well-partitioned and **binary** lifting matrix. The set of reflexive generalized inverse of Q with the **same support** as Q^{\top} is defined as :

$$E_3 = \left\{ P \in \mathbb{R}^{n \times N} \mid \begin{cases} supp(P) = supp(Q^\top) \\ \sum_{k=1}^N P_{ik} = 1 \quad \forall i \in [1, n] \end{cases} \right\}$$

Same support as Q^T is sparse (N non zero terms vs. $n \times N$)!

An example of score: RSA

Definition. (Restricted Spectral Approximation) (RSA)

Consider a subspace $\mathcal{R} \subset \mathbb{R}^N$, a Laplacian L, a lifting matrix Q and a reduction matrix P, and $\|x\|_L = \sqrt{x^\top L x}$. The RSA constant $\epsilon_{L,Q,\mathcal{R}}(P)$ is defined as :

$$\epsilon_{L,Q,\mathcal{R}}(P) = \sup_{x \in \mathcal{R}, \|x\|_L = 1} \|x - QPx\|_L$$

Many classical coarsening algorithms aim to minimize the RSA

$$P_{MP} = Q^+ = (Q^\top Q)^{-1} Q^\top$$

Exact solution:

$$\arg\min_{P} \sup_{x \in \mathbb{R}^{N}, ||x||_{2}=1} ||x - QPx||_{2}$$

RSA:

$$\arg\min_{P} \sup_{x \in \mathcal{R}, ||x||_{L} = 1} ||x - QPx||_{L}$$

- $P_{MP} = Q^+ = (Q^\top Q)^{-1} Q^\top$
- $P_{Loukas} = Q_l^+ \dots Q_1^+$

$$P_{MP} = Q^+ = (Q^\top Q)^{-1} Q^\top$$

$$P_{Loukas} = Q_l^+ \dots Q_1^+$$

$$P_{rao} = L_c^+ Q^T L$$

Inspired from:

$$\arg\min_{P} \sup_{x \in \mathbb{R}^{N}, \|x\|_{L} = 1} \|x - QPx\|_{L}$$

RSA:

$$\arg\min_{P} \sup_{x \in \mathcal{R}, \|x\|_{L} = 1} \|x - QPx\|_{L}$$

^[2] C Radhakrishna Rao, Sujit Kumar Mitra, et al. *Generalized inverse of a matrix and its applications*, Proceedings of the sixth Berkeley symposium on mathematical statistics and probability, 1972.

$$P_{MP} = Q^+ = (Q^\top Q)^{-1} Q^\top$$

$$P_{Loukas} = Q_l^+ \dots Q_1^+$$

$$P_{rao} = L_c^+ Q^T L$$

^[2] C Radhakrishna Rao, Sujit Kumar Mitra, et al. *Generalized inverse of a matrix and its applications*, Proceedings of the sixth Berkeley symposium on mathematical statistics and probability, 1972.

Results for the RSA

Conclusion

Key messages:

- Q contains all the structural information of the coarsened graph
- P has a degree of freedom and we propose a taxonomy of the admissible reduction matrices

Outlooks:

ightharpoonup Optimizing the RSA in E_2 and E_3

Conclusion

Learn more about optimizing the RSA and its application to GNN in our new preprint available: https://arxiv.org/abs/2506.11743

Appendices

References

- [1] Andreas Loukas, *Graph Reduction with Spectral and Cut Guarantees*, JMLR 2019.
- [2] C Radhakrishna Rao, Sujit Kumar Mitra, et al. *Generalized inverse of a matrix and its applications*, Proceedings of the sixth Berkeley symposium on mathematical statistics and probability, volume 1, pages 601–620. University of California Press Oakland, CA, USA, 1972.
- [3] Roger Penrose. A generalized inverse for matrices. In Mathematical proceedings of the Cambridge philosophical society, volume 51, pages 406–413. Cambridge University Press, 1955.

Adaption of Loukas coarsening algorithm

Algorithm Loukas algorithm Adapted

Require: Adjacency matrix A, Laplacian $L = f_L(A)$, propagation matrix S, a coarsening ratio r, preserved space \mathcal{R} , maximum number of nodes merged at one coarsening step: n_r

- 1: $n_{obj} \leftarrow \operatorname{int}(N N \times r)$ the number of nodes wanted at the end of the algorithm.
- 2: compute cost matrix $B_0 \leftarrow VV^TL^{-1/2}$ with V an orthonormal basis of \mathcal{R}
- 3: Q ← I_N
- 4: while $n \geq n_{obj}$ do
- 5: Make one coarsening STEP l
- 6: Create candidate contraction sets.
- 7: For each contraction \mathcal{C} , compute $\mathrm{cost}(\mathcal{C}, B_{l-1}, L_{l-1}) = \frac{\|\Pi_C B_{l-1}(B_{l-1}^T L_{l-1} B_{l-1})^{-1/2}\|_{L_{\mathcal{C}}}}{|\mathcal{C}| 1}$
- 8: Sort the list of contraction set by the lowest score
- Select the lowest scores non overlapping contraction set while the number of nodes merged is inferior to min(n nobi, n_e)
- 10: Compute Q_l , Q_l^+ , uniform intermediary coarsening with contraction sets selected
- 11: $B_l \leftarrow O_l B_{l-1}$
- 12: $Q \leftarrow Q_1Q$
- 13: $A_l \leftarrow (Q_l^+)^\top A_{l-1} Q_l^+ \text{diag}((Q_l^+)^\top A_{l-1} Q_l^+) 1_n)$
- 14: $L_{l-1} = f_L(A_{l-1})$
- 15: $n \leftarrow \min(n n_{obj}, n_e)$
- 16: end while
- 17: Compute $S_c^{MP} = PSQ$
- 18: return P, Q, S_c^{MP}

Optimizing RSA in E_2 and E_3

Figure: RSA optimization for Cora graph, combinatorial Laplacian ${\cal L}$

Training on coarsened graph procedure

Algorithm Training Procedure

Require: Adjacency A, node features X, desired propagation matrix S, preserved space \mathcal{R} . Laplacian L, a coarsening ratio r

- 1: P, Q, $S_c^{MP} \leftarrow \text{Coarsening-algorithm}(A, L, S, r, \mathcal{R})$
- 2: $X_c \leftarrow PX$
- 3: Initialize model (SGC or GCNconv)
- 4: **for** N_{epochs} iterations **do**
- 5: compute coarsened prediction $\Phi_{\theta}(S_c^{MP}, X_c)$
- uplift the predictions : $Q\Phi_{ heta}(S_c^{MP}, X_c)$
- 7: compute the cross entropy loss $J(Q\Phi_{ heta}(S_c^{MP},X_c))$
- 8: Backpropagate the gradient
- 9: Update θ
- 10: end for

Training GNN on G_c (experiments)

Table: Accuracy in % for node classification with SGC and GCNconv on different coarsening ratio

SGC	Cora			Citeseer		
r	0.3	0.5	0.7	0.3	0.5	0.7
P_{Loukas}	80.5 ± 0.0	79.7 ± 0.0	76.8 ± 0.0	72.6 ± 0.3	71.7 ± 0.1	$\textbf{69.7}\pm0.7$
P_{MP}	80.5 ± 0.0	80.1 ± 0.0	77.7 ± 0.0	72.8 ± 0.5	72.7 ± 0.0	69.5 ± 0.3
P_{opt}	77.1 ± 0.6	75.9 ± 0.1	73.8 ± 0.3	70.9 ± 0.2	70.2 ± 0.1	67.3 ± 0.4
$P_{Q^{\top}}^{*}$	80.3 ± 0.0	80.0 ± 0.1	77.2 ± 0.0	72.7 ± 0.3	72.6 ± 0.5	67.6 ± 0.2
\tilde{P}_q^*	80.7 ± 0.0	80.0 ± 0.0	77.6 ± 0.0	72.6 ± 0.2	72.7 ± 0.0	68.6 ± 0.4
P_{g,l_1}^{*}	80.4 ± 0.0	79.2 ± 0.0	78.3 ± 0.0	73.0 ± 0.0	71.2 ± 0.1	69.2 ± 0.4
Full Graph		81.0 ± 0.1			71.6 ± 0.1	
	Cora					
GCN		Cora			Citeseer	
$_{r}^{GCN}$	0.3	Cora	0.7	0.3	Citeseer 0.5	0.7
	0.3 80.6 \pm 0.8		0.7 78.1 ± 1.4	0.3 71.0 \pm 1.6		0.7 70.4 ± 0.8
r		0.5			0.5	
$\frac{r}{P_{Loukas}}$	80.6 ± 0.8	0.5 80.5 ± 1.0	78.1 ± 1.4	71.0 ± 1.6	0.5 72.2 ± 0.6	70.4 ± 0.8
$\begin{array}{c} r \\ \hline P_{Loukas} \\ P_{MP} \\ P_{opt} \end{array}$	80.6 ± 0.8 80.4 ± 1.0	0.5 80.5 \pm 1.0 80.7 \pm 0.9	78.1 ± 1.4 78.6 ± 0.9	71.0 ± 1.6 70.8 ± 1.9	$0.5 \\ 72.2 \pm 0.6 \\ 72.1 \pm 1.0$	70.4 ± 0.8 71.0 ± 1.0
$\begin{array}{c} r \\ \hline P_{Loukas} \\ P_{MP} \\ P_{opt} \end{array}$	80.6 ± 0.8 80.4 ± 1.0 73.7 ± 1.5	0.5 80.5 ± 1.0 80.7 ± 0.9 63.3 ± 1.4	$78.1 \pm 1.4 \\ 78.6 \pm 0.9 \\ 55.11 \pm 2.4$	$71.0 \pm 1.6 \\ 70.8 \pm 1.9 \\ 64.6 \pm 0.7$	$0.5 \\ 72.2 \pm 0.6 \\ 72.1 \pm 1.0 \\ 50.4 \pm 1.6$	70.4 ± 0.8 71.0 ± 1.0 42.6 ± 4.0
$\begin{array}{c} r \\ \hline P_{Loukas} \\ P_{MP} \end{array}$	80.6 ± 0.8 80.4 ± 1.0 73.7 ± 1.5 80.5 ± 0.9	0.5 80.5 ± 1.0 80.7 ± 0.9 63.3 ± 1.4 80.9 ± 0.6	78.1 ± 1.4 78.6 ± 0.9 55.11 ± 2.4 78.0 ± 0.9	71.0 ± 1.6 70.8 ± 1.9 64.6 ± 0.7 71.1 ± 1.5	$0.5 \\ 72.2 \pm 0.6 \\ 72.1 \pm 1.0 \\ 50.4 \pm 1.6 \\ \textbf{72.3} \pm 0.7$	70.4 ± 0.8 71.0 ± 1.0 42.6 ± 4.0 70.0 ± 0.9

Dataset Presentation

Dataset	# Nodes	# Edges	# Features	#classes
Cora PCC	2,485	10,138	1,433	7
Cora70	746	3,716	1,433	7
Citeseer PCC	2,120	7,358	3,703	6
Citeseer70	636	2,122	3,703	6