Taxonomy of reduction matrices for Graph Coarsening Antonin Joly, Nicolas Keriven, Aline Roumy # **Motivation** - Graph such as recommender systems (Reddit) too big to enter GPU - Graph Coarsening is a solution, along with graph condensation and node sampling strategies # **Background** Figure: Graph Coarsening with coarsening ratio of 4/7 # **Background** Figure: Graph Coarsening with coarsening ratio of 4/7 # **Background** Figure: Graph Coarsening with coarsening ratio of 4/7 ## Do P and Q play similar roles? # Only lifting matrix Q contains structural information - Coarsened Adjacency: $A_c = Q^{\top}AQ$ - Comb. Laplacian: $\mathcal{L} = D A$, $$Q = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$ A well partitioned Q matrix for \mathcal{L} $^{^1}Q$ is said to be well-partitioned if it has exactly one non-zero coefficient per row # Only lifting matrix Q contains structural information - Coarsened Adjacency: $A_c = Q^{\top}AQ$ - Comb. Laplacian: $\mathcal{L} = D A$, $$Q = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$ A well partitioned 1Q matrix for $\mathcal L$ **Lemma**. (Consistency of Laplacian [1]) Let Q be a well-partitioned matrix. The two following properties are equivalent: Q is proportional to a binary matrix. $$\forall A, \quad L(A_c) = Q^{\top} L Q$$ [1] Andreas Loukas, Graph Reduction with Spectral and Cut Guarantees, JMLR 2019. # Only lifting matrix Q contains structural information Lemma. (Consistency of Laplacian [1]) Let ${\cal Q}$ be a well-partitioned matrix. The two following properties are equivalent: ${\cal Q}$ is proportional to a binary matrix. $$\forall A, \quad L(A_c) = Q^{\top} L Q$$ \implies For a fixed lifting matrix Q, what are the admissible reduction matrix P? Can we find a better matrix P than the pseudo inverse? [1] Andreas Loukas, Graph Reduction with Spectral and Cut Guarantees, JMLR 2019. # General set of reduction matrices E_1 **Lemma.** (Generalized Inverse and Π projection) For a well-partitioned lifting matrix Q, let $\Pi = QP$: $$\Pi^2 = \Pi \iff Q \in P^g$$ where P^g is the set of **generalized inverse** of P (more general than Moore-Penrose) To our knowledge, E_1 does not have a closed-form! ## A characterizable subset E_2 **Lemma.** (Generalized reflexive inverse) For a well-partitioned lifting matrix Q and a reduction matrix P such that $Q \in P^g$: $$rank(P) = n \iff P \in Q^g$$ Conversely, $P \in Q^g$ implies $Q \in P^g$ and $\operatorname{rank}(P) = n$, such that $E_2 = Q^g \subset E_1$. E_2 is the set of generalized **reflexive** inverse. **Lemma.** (Characterization of generalized reflexive inverses of Q) Let $Q \in \mathbb{R}^{N \times n}$ be a well-partitioned lifting matrix. $$E_2 = Q^g = \{Q^+ + M(I_N - QQ^+) \mid M \in \mathbb{R}^{n \times N}\}$$ where ${\cal M}$ can be optimized wrt ${\it anything}$, supervised or unsupervised. # A characterizable subset E_2 **Lemma.** (Characterization of generalized reflexive inverses of Q) Let $Q \in \mathbb{R}^{N \times n}$ be a well-partitioned lifting matrix. $$E_2 = Q^g = \{Q^+ + M(I_N - QQ^+) \mid M \in \mathbb{R}^{n \times N}\}$$ where ${\cal M}$ can be optimized wrt ${\it anything}$, supervised or unsupervised. E_2 is easily characterized but the optimized matrix M is dense! # A sparse subset E_3 **Lemma.** (Generalized reflexive inverse with same support) Let $Q \in \mathbb{R}^{N \times n}$ be a well-partitioned and **binary** lifting matrix. The set of reflexive generalized inverse of Q with the **same support** as Q^{\top} is defined as : $$E_3 = \left\{ P \in \mathbb{R}^{n \times N} \mid \begin{cases} supp(P) = supp(Q^\top) \\ \sum_{k=1}^N P_{ik} = 1 \quad \forall i \in [1, n] \end{cases} \right\}$$ Same support as Q^T is sparse (N non zero terms vs. $n \times N$)! # An example of score: RSA **Definition.** (Restricted Spectral Approximation) (RSA) Consider a subspace $\mathcal{R} \subset \mathbb{R}^N$, a Laplacian L, a lifting matrix Q and a reduction matrix P, and $\|x\|_L = \sqrt{x^\top L x}$. The RSA constant $\epsilon_{L,Q,\mathcal{R}}(P)$ is defined as : $$\epsilon_{L,Q,\mathcal{R}}(P) = \sup_{x \in \mathcal{R}, \|x\|_L = 1} \|x - QPx\|_L$$ Many classical coarsening algorithms aim to minimize the RSA $$P_{MP} = Q^+ = (Q^\top Q)^{-1} Q^\top$$ #### Exact solution: $$\arg\min_{P} \sup_{x \in \mathbb{R}^{N}, ||x||_{2}=1} ||x - QPx||_{2}$$ #### RSA: $$\arg\min_{P} \sup_{x \in \mathcal{R}, ||x||_{L} = 1} ||x - QPx||_{L}$$ - $P_{MP} = Q^+ = (Q^\top Q)^{-1} Q^\top$ - $P_{Loukas} = Q_l^+ \dots Q_1^+$ $$P_{MP} = Q^+ = (Q^\top Q)^{-1} Q^\top$$ $$P_{Loukas} = Q_l^+ \dots Q_1^+$$ $$P_{rao} = L_c^+ Q^T L$$ #### Inspired from: $$\arg\min_{P} \sup_{x \in \mathbb{R}^{N}, \|x\|_{L} = 1} \|x - QPx\|_{L}$$ RSA: $$\arg\min_{P} \sup_{x \in \mathcal{R}, \|x\|_{L} = 1} \|x - QPx\|_{L}$$ ^[2] C Radhakrishna Rao, Sujit Kumar Mitra, et al. *Generalized inverse of a matrix and its applications*, Proceedings of the sixth Berkeley symposium on mathematical statistics and probability, 1972. $$P_{MP} = Q^+ = (Q^\top Q)^{-1} Q^\top$$ $$P_{Loukas} = Q_l^+ \dots Q_1^+$$ $$P_{rao} = L_c^+ Q^T L$$ ^[2] C Radhakrishna Rao, Sujit Kumar Mitra, et al. *Generalized inverse of a matrix and its applications*, Proceedings of the sixth Berkeley symposium on mathematical statistics and probability, 1972. ## Results for the RSA #### Conclusion #### Key messages: - Q contains all the structural information of the coarsened graph - P has a degree of freedom and we propose a taxonomy of the admissible reduction matrices #### Outlooks: ightharpoonup Optimizing the RSA in E_2 and E_3 #### **Conclusion** Learn more about optimizing the RSA and its application to GNN in our new preprint available: https://arxiv.org/abs/2506.11743 # Appendices #### References - [1] Andreas Loukas, *Graph Reduction with Spectral and Cut Guarantees*, JMLR 2019. - [2] C Radhakrishna Rao, Sujit Kumar Mitra, et al. *Generalized inverse of a matrix and its applications*, Proceedings of the sixth Berkeley symposium on mathematical statistics and probability, volume 1, pages 601–620. University of California Press Oakland, CA, USA, 1972. - [3] Roger Penrose. A generalized inverse for matrices. In Mathematical proceedings of the Cambridge philosophical society, volume 51, pages 406–413. Cambridge University Press, 1955. # Adaption of Loukas coarsening algorithm #### Algorithm Loukas algorithm Adapted Require: Adjacency matrix A, Laplacian $L = f_L(A)$, propagation matrix S, a coarsening ratio r, preserved space \mathcal{R} , maximum number of nodes merged at one coarsening step: n_r - 1: $n_{obj} \leftarrow \operatorname{int}(N N \times r)$ the number of nodes wanted at the end of the algorithm. - 2: compute cost matrix $B_0 \leftarrow VV^TL^{-1/2}$ with V an orthonormal basis of \mathcal{R} - 3: Q ← I_N - 4: while $n \geq n_{obj}$ do - 5: Make one coarsening STEP l - 6: Create candidate contraction sets. - 7: For each contraction \mathcal{C} , compute $\mathrm{cost}(\mathcal{C}, B_{l-1}, L_{l-1}) = \frac{\|\Pi_C B_{l-1}(B_{l-1}^T L_{l-1} B_{l-1})^{-1/2}\|_{L_{\mathcal{C}}}}{|\mathcal{C}| 1}$ - 8: Sort the list of contraction set by the lowest score - Select the lowest scores non overlapping contraction set while the number of nodes merged is inferior to min(n nobi, n_e) - 10: Compute Q_l , Q_l^+ , uniform intermediary coarsening with contraction sets selected - 11: $B_l \leftarrow O_l B_{l-1}$ - 12: $Q \leftarrow Q_1Q$ - 13: $A_l \leftarrow (Q_l^+)^\top A_{l-1} Q_l^+ \text{diag}((Q_l^+)^\top A_{l-1} Q_l^+) 1_n)$ - 14: $L_{l-1} = f_L(A_{l-1})$ - 15: $n \leftarrow \min(n n_{obj}, n_e)$ - 16: end while - 17: Compute $S_c^{MP} = PSQ$ - 18: return P, Q, S_c^{MP} # **Optimizing RSA** in E_2 and E_3 Figure: RSA optimization for Cora graph, combinatorial Laplacian ${\cal L}$ # Training on coarsened graph procedure #### Algorithm Training Procedure **Require:** Adjacency A, node features X, desired propagation matrix S, preserved space \mathcal{R} . Laplacian L, a coarsening ratio r - 1: P, Q, $S_c^{MP} \leftarrow \text{Coarsening-algorithm}(A, L, S, r, \mathcal{R})$ - 2: $X_c \leftarrow PX$ - 3: Initialize model (SGC or GCNconv) - 4: **for** N_{epochs} iterations **do** - 5: compute coarsened prediction $\Phi_{\theta}(S_c^{MP}, X_c)$ - uplift the predictions : $Q\Phi_{ heta}(S_c^{MP}, X_c)$ - 7: compute the cross entropy loss $J(Q\Phi_{ heta}(S_c^{MP},X_c))$ - 8: Backpropagate the gradient - 9: Update θ - 10: end for # Training GNN on G_c (experiments) Table: Accuracy in % for node classification with SGC and GCNconv on different coarsening ratio | SGC | Cora | | | Citeseer | | | |--|--|---|--|--|--|--| | r | 0.3 | 0.5 | 0.7 | 0.3 | 0.5 | 0.7 | | P_{Loukas} | 80.5 ± 0.0 | 79.7 ± 0.0 | 76.8 ± 0.0 | 72.6 ± 0.3 | 71.7 ± 0.1 | $\textbf{69.7}\pm0.7$ | | P_{MP} | 80.5 ± 0.0 | 80.1 ± 0.0 | 77.7 ± 0.0 | 72.8 ± 0.5 | 72.7 ± 0.0 | 69.5 ± 0.3 | | P_{opt} | 77.1 ± 0.6 | 75.9 ± 0.1 | 73.8 ± 0.3 | 70.9 ± 0.2 | 70.2 ± 0.1 | 67.3 ± 0.4 | | $P_{Q^{\top}}^{*}$ | 80.3 ± 0.0 | 80.0 ± 0.1 | 77.2 ± 0.0 | 72.7 ± 0.3 | 72.6 ± 0.5 | 67.6 ± 0.2 | | \tilde{P}_q^* | 80.7 ± 0.0 | 80.0 ± 0.0 | 77.6 ± 0.0 | 72.6 ± 0.2 | 72.7 ± 0.0 | 68.6 ± 0.4 | | P_{g,l_1}^{*} | 80.4 ± 0.0 | 79.2 ± 0.0 | 78.3 ± 0.0 | 73.0 ± 0.0 | 71.2 ± 0.1 | 69.2 ± 0.4 | | Full Graph | | 81.0 ± 0.1 | | | 71.6 ± 0.1 | | | | Cora | | | | | | | GCN | | Cora | | | Citeseer | | | $_{r}^{GCN}$ | 0.3 | Cora | 0.7 | 0.3 | Citeseer
0.5 | 0.7 | | | 0.3 80.6 \pm 0.8 | | 0.7 78.1 ± 1.4 | 0.3 71.0 \pm 1.6 | | 0.7
70.4 ± 0.8 | | r | | 0.5 | | | 0.5 | | | $\frac{r}{P_{Loukas}}$ | 80.6 ± 0.8 | 0.5 80.5 ± 1.0 | 78.1 ± 1.4 | 71.0 ± 1.6 | 0.5 72.2 ± 0.6 | 70.4 ± 0.8 | | $\begin{array}{c} r \\ \hline P_{Loukas} \\ P_{MP} \\ P_{opt} \end{array}$ | 80.6 ± 0.8
80.4 ± 1.0 | 0.5
80.5 \pm 1.0
80.7 \pm 0.9 | 78.1 ± 1.4
78.6 ± 0.9 | 71.0 ± 1.6
70.8 ± 1.9 | $0.5 \\ 72.2 \pm 0.6 \\ 72.1 \pm 1.0$ | 70.4 ± 0.8
71.0 ± 1.0 | | $\begin{array}{c} r \\ \hline P_{Loukas} \\ P_{MP} \\ P_{opt} \end{array}$ | 80.6 ± 0.8
80.4 ± 1.0
73.7 ± 1.5 | 0.5 80.5 ± 1.0 80.7 ± 0.9 63.3 ± 1.4 | $78.1 \pm 1.4 \\ 78.6 \pm 0.9 \\ 55.11 \pm 2.4$ | $71.0 \pm 1.6 \\ 70.8 \pm 1.9 \\ 64.6 \pm 0.7$ | $0.5 \\ 72.2 \pm 0.6 \\ 72.1 \pm 1.0 \\ 50.4 \pm 1.6$ | 70.4 ± 0.8
71.0 ± 1.0
42.6 ± 4.0 | | $\begin{array}{c} r \\ \hline P_{Loukas} \\ P_{MP} \end{array}$ | 80.6 ± 0.8
80.4 ± 1.0
73.7 ± 1.5
80.5 ± 0.9 | 0.5 80.5 ± 1.0 80.7 ± 0.9 63.3 ± 1.4 80.9 ± 0.6 | 78.1 ± 1.4 78.6 ± 0.9 55.11 ± 2.4 78.0 ± 0.9 | 71.0 ± 1.6
70.8 ± 1.9
64.6 ± 0.7
71.1 ± 1.5 | $0.5 \\ 72.2 \pm 0.6 \\ 72.1 \pm 1.0 \\ 50.4 \pm 1.6 \\ \textbf{72.3} \pm 0.7$ | 70.4 ± 0.8
71.0 ± 1.0
42.6 ± 4.0
70.0 ± 0.9 | # **Dataset Presentation** | Dataset | # Nodes | # Edges | # Features | #classes | |--------------|---------|---------|------------|----------| | Cora PCC | 2,485 | 10,138 | 1,433 | 7 | | Cora70 | 746 | 3,716 | 1,433 | 7 | | Citeseer PCC | 2,120 | 7,358 | 3,703 | 6 | | Citeseer70 | 636 | 2,122 | 3,703 | 6 |