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Motivation

» Graph such as recommender
systems (Reddit) too big to
enter GPU

» Graph Coarsening is a solution,
along with graph condensation
and node sampling strategies
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Background

Figure: Graph Coarsening with coarsening ratio of 4/7
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Background

Figure: Graph Coarsening with coarsening ratio of 4/7

Do P and () play similar roles?

Antonin Joly, Nicolas Keriven, Aline Roumy 3/11



Only lifting matrix Q contains structural
information

- Coarsened Adjacency: A. = QT AQ

- Comb. Laplacian: L =D — A,
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1Q is said to be well-partitioned if it has exactly one non-zero coefficient per row
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Only lifting matrix Q contains structural
information

- Coarsened Adjacency: A. = QT AQ

- Comb. Laplacian: L =D — A,
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A well partitioned' ) matrix for £

Lemma. (Consistency of Laplacian [1])
Let @ be a well-partitioned matrix. The two following properties
are equivalent:

Q is proportional to a binary matrix.

il
VA, L(A)=QTLQ

[1] Andreas Loukas, Graph Reduction with Spectral and Cut Guarantees, JMLR 2019.
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Only lifting matrix Q contains structural
information

Lemma. (Consistency of Laplacian [1])
Let @ be a well-partitioned matrix. The two following properties
are equivalent:

Q is proportional to a binary matrix.

0
VA, L(A)=QTLQ

— For a fixed lifting matrix (), what are the admissible reduction
matrix P? Can we find a better matrix P than the pseudo inverse?

[1] Andreas Loukas, Graph Reduction with Spectral and Cut Guarantees, JMLR 2019.
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General set of reduction matrices I

Lemma. (Generalized Inverse and II projection)
For a well-partitioned lifting matrix @, let Il = QP:

I’=11 <= QeP’

where P9 is the set of generalized inverse of P (more general
than Moore-Penrose)

E,={P| Qe P9}

To our knowledge, E1 does not have a closed-form!
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A characterizable subset F,

Lemma. (Generalized reflexive inverse)
For a well-partitioned lifting matrix ¢ and a reduction matrix P
such that Q) € P9 :

rank(P)=n <= Pec@’

Conversely, P € Q9 implies Q € P? and rank(P) = n, such that
FEy = QY9 C E;. E5 is the set of generalized reflexive inverse.

Lemma. (Characterization of generalized reflexive inverses of Q)
Let Q@ € RVX" be a well-partitioned lifting matrix.

Ey=Q'={Qt + M (Iy — QQ™) | M e R** N}

where M can be optimized wrt anything, supervised or unsuper-
vised.
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A characterizable subset F,

Lemma. (Characterization of generalized reflexive inverses of Q)
Let @ € RVX™ be a well-partitioned lifting matrix.

By =Q¢ ={Q" + M (In - QQ") | M e R™"}

where M can be optimized wrt anything, supervised or unsuper-
vised.

Ey={P|Qe€ P%

FEs is easily characterized but the optimized matrix M is dense!
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A sparse subset 3

Lemma. (Generalized reflexive inverse with same support)

Let @ € RY*™ be a well-partitioned and binary lifting matrix. The
set of reflexive generalized inverse of () with the same support as
Q" is defined as :

{SUPP(P) = supp(Q") }

B3 =< PecR™N
’ { SN Pp=1 Vie[l,n]

Ey={P| Qe P}

Same support as Q7 is sparse (N non zero terms vs. n x N)!
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An example of score : RSA

Definition. (Restricted Spectral Approximation) (RSA)

Consider a subspace R € RY, a Laplacian L, a lifting matrix Q and a
reduction matrix P, and ||z|| = VT Lz. The RSA constant e, g = (P)
is defined as :

er,qr(P)= sup |lz —QPz|
2R, [l =1

Many classical coarsening algorithms aim to minimize the RSA
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Example of reduction matrices

> Pyp=Qt=(Q'Q)'Q"
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Exact solution:

arg min sup ||z — QPzx||2
P 2erN |allo=1
RSA :
argmin  sup |z — QPx||L

P zer, ||z =1
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Example of reduction matrices

By = {P| Qe P7}

> Pup=Q"=(Q'Q)'QT

> j:)Louk:u,s:Cgl-i_-“CgiF
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Example of reduction matrices

> Pyp=QT=(QTQ)'QT
» Proukas = Q;FQT

> Prao = LZ_QTL

Inspired from:

arg min sup |l — QPzx||L
P zer¥ ||z|L=1
RSA :
argmin  sup |z — QPx||L

z€R,||z||L=1

[2] C Radhakrishna Rao, Sujit Kumar Mitra, et al. Generalized inverse of a matrix and its
applications, Proceedings of the sixth Berkeley symposium on mathematical statistics and

probability, 1972.
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Example of reduction matrices

Ei={P|Qe P}

> Pyp=Q"=(Q'Q)'Q"
» Proukas :Q?_QT

> Prao = Lj_QTL

[2] C Radhakrishna Rao, Sujit Kumar Mitra, et al. Generalized inverse of a matrix and its
applications, Proceedings of the sixth Berkeley symposium on mathematical statistics and
probability, 1972.
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Results for the RSA
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Conclusion

Key messages:

» () contains all the structural information of the coarsened graph

» P has a degree of freedom and we propose a taxonomy of the
admissible reduction matrices

Outlooks :
» Optimizing the RSA in F5 and Ej3

B ={P|QecP?

Antonin Joly, Nicolas Keriven, Aline Roumy 11/11



Conclusion

Learn more about optimizing the RSA and its application to GNN in our
new preprint available : https://arxiv.org/abs/2506.11743
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Adaption of Loukas coarsening algorithm

Algorithm Loukas algorithm Adapted

Require: Adjacency matrix A, Laplacian L = f1(A), propagation matrix S, a coarsening ratio 7 , preserved space R,

1:
2:
3:
4:
5:
6:
7
8:
9:

10:
11

12:
13:
14:
15:
16

17:
18:

maximum number of nodes merged at one coarsening step : n.
Nop; < int(N — N X r) the number of nodes wanted at the end of the algorithm.
compute cost matrix By + VVTL='/2 with V an orthonormal basis of R
Q« In
while n > ng; do
Make one coarsening STEP [
Create candidate contraction sets. . s
For each contraction C, compute cost(C, Bi—1,Li—1) = M%%”"‘
Sort the list of contraction set by the lowest score
Select the lowest scores non overlapping contraction set while the number of nodes merged is inferior to min(n —
TNobjs Ne)
Compute Qi, Q;', uniform intermediary coarsening with contraction sets selected
By <+ Q1B
Q< QQ
A Q)T A QF — diag((QF) T A1 Q)1n)
Lioy = fu(Ai-1)
n 4 min(n — nos, nNe)
end while
Compute SMP = PSQ
return P,Q,SMP
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Optimizing RSA in F; and Ej3
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Figure: RSA optimization for Cora graph, combinatorial Laplacian £
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Training on coarsened graph procedure

Algorithm Training Procedure

Require: Adjacency A, node features X, desired propagation matrix S,

preserved space R, Laplacian L, a coarsening ratio r

1 P, Q, SMP « Coarsening-algorithm(A, L, S, r, R)
2. X, PX
3: Initialize model (SGC or GCNconv)
4: for Nepochs iterations do
5. compute coarsened prediction ®4(SMP X )
6:  uplift the predictions : Q®y(SMP, X.)
7 compute the cross entropy loss J(Q®g(SMP X))
8:  Backpropagate the gradient
9:  Update 6
10: end for
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Training GNN on G. (experiments)

Table: Accuracy in % for node classification with SGC and GCNconv on

different coarsening ratio

sGc Cora Citeseer
r 0.3 0.5 0.7 0.3 0.5 0.7
PrLoukas 805+00 797+00 768+00 726403 71.7+01 69.7+07
Pup 80.5+00 80.1+00 77.7+00 728405 727+0.0 695+0.3
Popt 771+06 759+01 738+03 709+02 702401 67.3+04
Pir 803+00 800+£01 772+00 727+03 726+05 67.6+0.2
Py 80.7 £ 00 80.0+00 776+00 726+02 727 +00 68.6+04
ol 80.4+00 792+00 783+00 73.0+£00 712401 692404
Full Graph 81.0 £0.1 71.6 £ 0.1
GCN Cora Citeseer
r 0.3 0.5 0.7 0.3 0.5 0.7
Proukas 80.6 +08 805+10 781+14 71.0+16 722+06 70.4+0.8
Pup 80.4+10 807+09 786+09 708+19 721+10 71.0+1.0
Pyt 73.7+15 633+14 5511 +24 646+07 504+16 426+40
T 805+09 809+06 780+£09 71.1+£15 72307 700£09
Py 80.6 +1.1 813+06 787+09 71.1+17 721+12 69.6+1.0
ol 80.4+09 800+09 782+07 702+18 668+11 667 +12
Full Graph 81.3+ 0.8 709 + 1.4
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Dataset Presentation

Dataset 7# Nodes # Edges # Features #classes
Cora PCC 2,485 10,138 1,433 7
Cora70 746 3,716 1,433 7
Citeseer PCC 2,120 7,358 3,703 6
Citeseer70 636 2,122 3,703 6
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