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Motivation

▶ Graph such as recommender
systems (Reddit) too big to
enter GPU

▶ Graph Coarsening is a solution,
along with graph condensation
and node sampling strategies
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Figure: Graph Coarsening with coarsening ratio of 4/7
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Do P and Q play similar roles?
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Only lifting matrix Q contains structural
information

- Coarsened Adjacency: Ac = Q⊤AQ

- Comb. Laplacian: L = D −A,
Q =


1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1


A well partitioned1Q matrix for L
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1Q is said to be well-partitioned if it has exactly one non-zero coefficient per row
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
A well partitioned1Q matrix for L

Lemma. (Consistency of Laplacian [1])
Let Q be a well-partitioned matrix. The two following properties
are equivalent:

Q is proportional to a binary matrix.
⇕

∀A, L(Ac) = Q⊤LQ

1Q is said to be well-partitioned if it has exactly one non-zero coefficient per row

[1] Andreas Loukas, Graph Reduction with Spectral and Cut Guarantees, JMLR 2019.
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Only lifting matrix Q contains structural
information

Lemma. (Consistency of Laplacian [1])
Let Q be a well-partitioned matrix. The two following properties
are equivalent:

Q is proportional to a binary matrix.
⇕

∀A, L(Ac) = Q⊤LQ

=⇒ For a fixed lifting matrix Q, what are the admissible reduction
matrix P? Can we find a better matrix P than the pseudo inverse?

1Q is said to be well-partitioned if it has exactly one non-zero coefficient per row

[1] Andreas Loukas, Graph Reduction with Spectral and Cut Guarantees, JMLR 2019.
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General set of reduction matrices E1

Lemma. (Generalized Inverse and Π projection)
For a well-partitioned lifting matrix Q, let Π = QP :

Π2 = Π ⇐⇒ Q ∈ P g

where P g is the set of generalized inverse of P (more general
than Moore-Penrose)

E1 = {P | Q ∈ P g}

To our knowledge, E1 does not have a closed-form!
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A characterizable subset E2

Lemma. (Generalized reflexive inverse)
For a well-partitioned lifting matrix Q and a reduction matrix P
such that Q ∈ P g :

rank(P ) = n ⇐⇒ P ∈ Qg

Conversely, P ∈ Qg implies Q ∈ P g and rank(P ) = n, such that
E2 = Qg ⊂ E1. E2 is the set of generalized reflexive inverse.

Lemma. (Characterization of generalized reflexive inverses of Q)
Let Q ∈ RN×n be a well-partitioned lifting matrix.

E2 = Qg = {Q+ +M (IN −QQ+) | M ∈ Rn×N}

where M can be optimized wrt anything, supervised or unsuper-
vised.
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A characterizable subset E2

Lemma. (Characterization of generalized reflexive inverses of Q)
Let Q ∈ RN×n be a well-partitioned lifting matrix.

E2 = Qg = {Q+ +M (IN −QQ+) | M ∈ Rn×N}

where M can be optimized wrt anything, supervised or unsuper-
vised.

E1 = {P | Q ∈ P g}

E2 = Qg

E2 is easily characterized but the optimized matrix M is dense!
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A sparse subset E3

Lemma. (Generalized reflexive inverse with same support)
Let Q ∈ RN×n be a well-partitioned and binary lifting matrix. The
set of reflexive generalized inverse of Q with the same support as
Q⊤ is defined as :

E3 =

{
P ∈ Rn×N

∣∣∣∣∣
{
supp(P ) = supp(Q⊤)∑N

k=1 Pik = 1 ∀i ∈ [1, n]

}

E1 = {P | Q ∈ P g}
E2 = Qg

E3 = Qg
supp

Same support as QT is sparse (N non zero terms vs. n×N)!
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An example of score : RSA

Definition. (Restricted Spectral Approximation) (RSA)

Consider a subspace R ⊂ RN , a Laplacian L, a lifting matrix Q and a

reduction matrix P , and ∥x∥L =
√
x⊤Lx. The RSA constant ϵL,Q,R(P )

is defined as :

ϵL,Q,R(P ) = sup
x∈R,∥x∥L=1

∥x−QPx∥L

Many classical coarsening algorithms aim to minimize the RSA

Antonin Joly, Nicolas Keriven, Aline Roumy 8 / 11



Example of reduction matrices

▶ PMP = Q+ = (Q⊤Q)−1Q⊤

▶ PLoukas = Q+
l . . . Q+

1

▶ Prao = L+
c Q

TL

Exact solution:

argmin
P

sup
x∈RN ,∥x∥2=1

∥x−QPx∥2

RSA :

argmin
P

sup
x∈R,∥x∥L=1

∥x−QPx∥L
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Example of reduction matrices

▶ PMP = Q+ = (Q⊤Q)−1Q⊤
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l . . . Q+

1

▶ Prao = L+
c Q

TL

E1 = {P | Q ∈ P g}
E2 = Qg

E3 = Qg
supp

PLoukas PMP
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Example of reduction matrices

▶ PMP = Q+ = (Q⊤Q)−1Q⊤

▶ PLoukas = Q+
l . . . Q+

1

▶ Prao = L+
c Q

TL

Inspired from:

argmin
P

sup
x∈RN ,∥x∥L=1

∥x−QPx∥L

RSA :

argmin
P

sup
x∈R,∥x∥L=1

∥x−QPx∥L

[2] C Radhakrishna Rao, Sujit Kumar Mitra, et al. Generalized inverse of a matrix and its
applications, Proceedings of the sixth Berkeley symposium on mathematical statistics and
probability, 1972.
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Results for the RSA
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Conclusion

Key messages:

▶ Q contains all the structural information of the coarsened graph

▶ P has a degree of freedom and we propose a taxonomy of the
admissible reduction matrices

Outlooks :

▶ Optimizing the RSA in E2 and E3

E1 = {P | Q ∈ P g}
E2 = Qg

E3 = Qg
supp

Prao

PLoukas PMP

P ∗
g

P ∗
Q⊤
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Conclusion

Learn more about optimizing the RSA and its application to GNN in our
new preprint available : https://arxiv.org/abs/2506.11743
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Adaption of Loukas coarsening algorithm

Algorithm Loukas algorithm Adapted

Require: Adjacency matrix A, Laplacian L = fL(A), propagation matrix S, a coarsening ratio r , preserved space R,
maximum number of nodes merged at one coarsening step : ne

1: nobj ← int(N −N × r) the number of nodes wanted at the end of the algorithm.
2: compute cost matrix B0 ← V V TL−1/2 with V an orthonormal basis of R
3: Q← IN
4: while n ≥ nobj do
5: Make one coarsening STEP l
6: Create candidate contraction sets.

7: For each contraction C, compute cost(C, Bl−1, Ll−1) =
∥ΠCBl−1(B

T
l−1Ll−1Bl−1)

−1/2∥LC
|C|−1

8: Sort the list of contraction set by the lowest score
9: Select the lowest scores non overlapping contraction set while the number of nodes merged is inferior to min(n−

nobj , ne)
10: Compute Ql, Q

+
l , uniform intermediary coarsening with contraction sets selected

11: Bl ← QlBl−1

12: Q← QlQ
13: Al ← (Q+

l )
⊤Al−1Q

+
l − diag((Q+

l )
⊤Al−1Q

+
l )1n)

14: Ll−1 = fL(Al−1)
15: n← min(n− nobj , ne)
16: end while
17: Compute SMP

c = PSQ
18: return P,Q, SMP

c
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Optimizing RSA in E2 and E3
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Figure: RSA optimization for Cora graph, combinatorial Laplacian L
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Training on coarsened graph procedure

Algorithm Training Procedure

Require: Adjacency A, node features X, desired propagation matrix S,
preserved space R, Laplacian L, a coarsening ratio r

1: P , Q, SMP
c ← Coarsening-algorithm(A,L, S, r,R)

2: Xc ← PX
3: Initialize model (SGC or GCNconv)
4: for Nepochs iterations do
5: compute coarsened prediction Φθ(S

MP
c , Xc)

6: uplift the predictions : QΦθ(S
MP
c , Xc)

7: compute the cross entropy loss J(QΦθ(S
MP
c , Xc))

8: Backpropagate the gradient
9: Update θ

10: end for
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Training GNN on Gc (experiments)

Table: Accuracy in % for node classification with SGC and GCNconv on
different coarsening ratio

SGC
Cora Citeseer

r 0.3 0.5 0.7 0.3 0.5 0.7

PLoukas 80.5 ± 0.0 79.7 ± 0.0 76.8 ± 0.0 72.6 ± 0.3 71.7 ± 0.1 69.7 ± 0.7
PMP 80.5 ± 0.0 80.1 ± 0.0 77.7 ± 0.0 72.8 ± 0.5 72.7 ± 0.0 69.5 ± 0.3
Popt 77.1 ± 0.6 75.9 ± 0.1 73.8 ± 0.3 70.9 ± 0.2 70.2 ± 0.1 67.3 ± 0.4
P ∗
Q⊤ 80.3 ± 0.0 80.0 ± 0.1 77.2 ± 0.0 72.7 ± 0.3 72.6 ± 0.5 67.6 ± 0.2

P ∗
g 80.7 ± 0.0 80.0 ± 0.0 77.6 ± 0.0 72.6 ± 0.2 72.7 ± 0.0 68.6 ± 0.4

P ∗
g,l1

80.4 ± 0.0 79.2 ± 0.0 78.3 ± 0.0 73.0 ± 0.0 71.2 ± 0.1 69.2 ± 0.4
Full Graph 81.0 ± 0.1 71.6 ± 0.1

GCN
Cora Citeseer

r 0.3 0.5 0.7 0.3 0.5 0.7

PLoukas 80.6 ± 0.8 80.5 ± 1.0 78.1 ± 1.4 71.0 ± 1.6 72.2 ± 0.6 70.4 ± 0.8
PMP 80.4 ± 1.0 80.7 ± 0.9 78.6 ± 0.9 70.8 ± 1.9 72.1 ± 1.0 71.0 ± 1.0
Popt 73.7 ± 1.5 63.3 ± 1.4 55.11 ± 2.4 64.6 ± 0.7 50.4 ± 1.6 42.6 ± 4.0
P ∗
Q⊤ 80.5 ± 0.9 80.9 ± 0.6 78.0 ± 0.9 71.1 ± 1.5 72.3 ± 0.7 70.0 ± 0.9

P ∗
g 80.6 ± 1.1 81.3 ± 0.6 78.7 ± 0.9 71.1 ± 1.7 72.1 ± 1.2 69.6 ± 1.0

P ∗
g,l1

80.4 ± 0.9 80.0 ± 0.9 78.2 ± 0.7 70.2 ± 1.8 66.8 ± 1.1 66.7 ± 1.2
Full Graph 81.3 ± 0.8 70.9 ± 1.4
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Dataset Presentation

Dataset # Nodes # Edges # Features #classes

Cora PCC 2,485 10,138 1,433 7
Cora70 746 3,716 1,433 7

Citeseer PCC 2,120 7,358 3,703 6
Citeseer70 636 2,122 3,703 6
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